Mixed High-Order Non-Local Attention Network for Single Image Super-Resolution
نویسندگان
چکیده
منابع مشابه
Single-image super-resolution via local learning
Nearest neighbor-based algorithms are popular in example-based super-resolution from a single image. The core idea behind such algorithms is that similar images are close in the sense of distance measurement. However, it is well known in the field of machine learning and statistical learning theory that the generalization of the nearest neighbor-based estimation is poor, when complex or high di...
متن کاملLocal Patch Classification Based Framework for Single Image Super-Resolution
methods often focus on the dictionary learning or network training. In this paper, we detailedly discuss a new SR framework based on local classification instead of traditional dictionary learning. The proposed efficient and extendible SR framework is named as local patch classification (LPC) based framework. The LPC framework consists of a learning stage and a reconstructing stage. In the lear...
متن کاملSingle Image Super-Resolution
Image super-resolution is the task of obtaining a high-resolution (HR) image of a scene given low-resolution (LR) image(s) of the scene. In this project, we have focused on the task of super-resolution given a single LR image, which is usually the case. There exist many techniques in literature addressing this task, and we have considered two techniques having the essence of [1] and [2]. In fir...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملGUN: Gradual Upsampling Network for single image super-resolution
—In this paper, we propose an efficient super-resolution (SR) method based on deep convolutional neural network (CNN), namely gradual upsampling network (GUN). Recent CNN based SR methods either preliminarily magnify the low resolution (LR) input to high resolution (HR) and then reconstruct the HR input, or directly reconstruct the LR input and then recover the HR result at the last layer. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3069777